Devoir Maison n°2

Exercice 1:

On définit la suite (u_n) , pour tout entier naturel n par : $\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{u_n}{u_n + 2} \end{cases}$

1) Calculer u_1 , u_2 et u_3 .

$$u_1 = \frac{u_0}{u_0 + 2} = \frac{1}{3}$$
; $u_2 = \frac{u_1}{u_1 + 2} = \frac{\frac{1}{3}}{\frac{1}{3} + \frac{6}{3}} = \frac{1}{7}$; $u_3 = \frac{u_2}{u_2 + 2} = \frac{\frac{1}{7}}{\frac{1}{7} + \frac{14}{7}} = \frac{1}{15}$

2) Montrer par récurrence que pour tout n, $u_n > 0$. En déduire de (u_n) est bien définie.

Soit P(n) la propriété « $u_n > 0$ »

Initialisation : $u_0 = 1 > 0$. La propriété est vraie au rang 0.

Hérédité : Soit k un entier naturel fixé tel que $u_k > 0$.

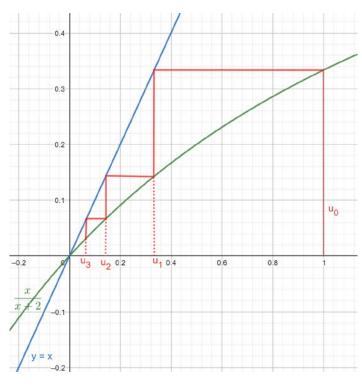
Donc
$$u_k > 0$$
 et $u_k + 2 > 2 > 0$ donc $\frac{u_k}{u_k + 2} > 0$ donc $u_{k+1} > 0$

Conclusion : La propriété P est initialisé au rang 0 et héréditaire à partir de ce rang, donc par le principe de récurrence, P est vraie pour tout entier naturel n.

Ainsi (u_n) est bien définie, on ne divisera jamais par 0.

3) Donner l'expression de la fonction f telle que $u_{n+1} = f(u_n)$ puis tracer dans un repère adapté sa représentation et la représentation en chemin de (u_n) .

$$f(x) = \frac{x}{x+2}$$



Exercice 2:

Soit (v_n) la suite définie par $v_n = u_n - n + 1$ donc $u_n = v_n + n - 1$

a) Montrer que (v_n) est une suite géométrique.

$\frac{\textbf{Devoir Maison n}^{\circ} \textbf{2}}{v_{n+1} = u_{n+1} - (n+1) + 1}$

$$v_{n+1} = u_{n+1} - (n+1) + 1$$

$$= 3u_n - 2n + 3 - n - 1 + 1$$

$$= 3(v_n + n - 1) - 3n + 3$$

$$= 3v_n$$

 (v_n) est donc une suite géométrique de raison 3 et de premier terme $v_0=u_0-0+1=1$.

b) Ecrire v_n en fonction de n.

$$v_n = v_0 \times q^n = 1 \times 3^n$$

c) En déduire u_n en fonction de n.

$$u_n = v_n + n - 1 = 3^n + n + 1$$