
CODAGE EN PYTHON

✒ Strucures de contrôle

# Définition de fonction
def add(a, b):

c = a + b # affectation de a + b à c
return c # retourne la valeur de c

# Test conditionnel SI ALORS SINON
if a == b:

... # bloc de code exécuté si a = b
elif a != c:

... # bloc de code exécuté si a différent de c
else:

... # bloc de code exécuté par défaut
# Boucle POUR
for i in range(0,10): # i prend successivement les valeurs de 0 à 10 non compris

... # bloc de code exécuté pour chaque valeur de i
for l in "bonjour": # l prend successivement les lettres du mot bonjour

... # bloc de code exécuté pour chaque valeur de l
# Boucle TANT QUE
while u < M:

... # bloc de code exécuté tant que u < M

✒ Variables

n = 1 # n est de type entier
x = 1.0 # x est de type réel
s = "chaîne" # s est de type string
b = True # ou False, b est un booléen

l = [] # l est de type liste
l.append(e) # ajoute e à la liste
l.remove(e) # supprime e de la liste
k = l[0] # accès à l'élément de rang 0

✒ Entrées/Sorties

print("n = ", n) # affiche la valeur de n
s = input("s = ") # demande la valeur de s => s est de type string
n = int(s) # convertit s en un entier
x = float(s) # convertit s en un réel

✒ Opérations sur les variables

n = n + 1 # ajoute 1 à n
u = 2 * u # multiplie u par 2
x = 1 / 3 # x = 0.3333333333333333
k = 5 ** 2 # élève 5 au carré et l'affecte à k
q = a // b # affecte à q le quotient de la division euclidienne de a par b
r = a % b # affecte à r le reste de la division euclidienne de a par b

LES POLYNÔMES

✒ Polynômes du 1erdegré

ax +b = 0 ⇐⇒ x = −b

a

x

ax +b

−∞ −b

a
+∞

signe de (−a) 0 signe de a

✒ Polynômes du 2nddegré

N Formes possibles :

P (x) = ax2 +bx + c (forme développée)
= a(x −α)2 +β (forme canonique)
= a(x −x0)2 ou a(x −x1)(x −x2) (forme factorisée si elle existe)

N Pour dresser le tableau de variations :

α= −b

2a
β= P (α)

a > 0

x

P

−∞ α +∞

ββ

a < 0

x

P

−∞ α +∞

ββ

N Pour déterminer les racines du polynôme, la forme factorisée ou dresser le tableau de signes :

∆= b2 −4ac

Pas de racines dans R

x0 = −b

2a

x1,2 = −b ±p
∆

2a

∆< 0

∆= 0

∆> 0

x

P (x)

−∞ +∞
signe de a

x

P (x)

−∞ x0 +∞
signe de a 0 signe de a

x

P (x)

−∞ x1 x2 +∞
sig. a 0 sig. (−a) 0 sig. a

N Propriétés des racines :

x1 +x2 = −b

a
et x1x2 = c

a
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LES FONCTIONS

✒ Lecture graphique

×
(

0
f (0)

)
Solutions de l’équation f (x) = 0

× × ×

•

•
A

B

a

f (a)

Tangente en
a de coeff.

direct. f ′(a)

f ′(a) = yB − y A

xB −xA

✒ Taux de variation entre a et a +h ✒ Équation de la tangente en a

lim
h→0

f (a +h)− f (a)

h
= f ′(a) y = f ′(a)(x −a)+ f (a)

✒ Tableaux des dérivées

f (x) f ′(x)

k 0

x 1

x2 2x

xn nxn−1

1

x

−1

x2

1

xn
−n

xn+1

p
x

1

2
p

x

ex ex

cos x −sin x

sin x cos x

f f ′

ku ku′

u + v u′+ v ′

un nu′un−1

uv u′v +uv ′

1

v

−v ′

v2

u

v

u′v −uv ′

v2

p
u

u′

2
p

u

eu u′eu

cosu −u′ sinu

sinu u′ cosu

✒ Pour étudier les variations d’une fonction f :

1. je calcule f ′(x)

2. j’étudie le signe de f ′(x) en dressant son tableau de signes

3. je déduis les variations de f : f ′(x) < 0 =⇒ f ↘ ou f ′(x) > 0 =⇒ f ↗

✒ Pour étudier la position relative de C f par rapport à Cg :

1. je calcule la différence d(x) = f (x)− g (x)

2. j’étudie le signe de d(x) en dressant son tableau de signes

3. je déduis la position de C f par rapport à Cg : d(x) < 0 =⇒ C f <Cg ou d(x) > 0 =⇒ C f >Cg

✒ Propriétés de la fonction exponentielle

La fonction exponentielle est définie sur R et pour tout réel X , eX > 0

0
•

1

•e0 = 1

•e1 = e•

y = exy = e−x e0 = 1

e1 = e (≃ 2,718)

ea+b = ea ×eb(
ea)n = ea×n

ea−b = ea

eb

e−b = 1

eb

✒ Application concrète

EN ÉCONOMIE Notation Remarques

Coût total de production C (x) ou CT (x) coûts fixes : C (0)

Coût marginal Cm (x) =C ′(x) coût de la dernière unité produite

Coût moyen CM (x) = C (x)

x
coût moyen unitaire

Recette ou chiffres d’affaires R(x) = p ×x p est le prix de vente unitaire

Bénéfice B(x) = R(x)−C (x) " attention au − devant C (x)

EN CINÉMATIQUE Notation Remarques

Position de l’objet f (t ) position initiale : f (0)

Vitesse instantanée de l’objet v(t ) = f ′(t ) à ne pas confondre avec la vitesse moyenne v = d

t
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LES SUITES

✒ Deux modes de génération
N Explicite ou fonctionnelle (en fonction de n) : un = f (n)
N Récurrent (en fonction du terme précédent) : un+1 = f (un )

✒ Deux types de suite particulière

Nature ARITHMÉTIQUE GÉOMÉTRIQUE

un+1 = f (un )

{
up

un+1 = un + r

vp

vn+1 = qvn

un = f (n)
un = u0 +nr

= up + (n −p)r

vn = v0 ×qn

= vp ×qn−p

Somme de up à un (n −p +1)︸ ︷︷ ︸
nombre de termes

×premier+dernier

2
premier× 1−qn−p+1

1−q

Pour démontrer un+1 −un = ·· · = r

vn+1

vn
= ·· · = q

vn+1 = ·· · = qvn

✒ Variations de suites

1. je calcule la différence un+1 −un

2. j’étudie son signe

3. j’en déduis les variations de la suite u

un+1 −un


> 0 =⇒ (un ) est strictement croissante

< 0 =⇒ (un ) est strictement décroissante

= 0 =⇒ (un ) est stationnaire ou constante

" Si un = f (n) alors u a les mêmes variations que la fonction f qui la génère.

✒ Calculer avec des pourcentages

t% de q
t

100
×q

Augmenter q de t%

(
1+ t

100

)
×q

Diminuer q de t%

(
1− t

100

)
×q

Taux d’évolution entre v0 et v1
v1 − v0

v0
×100

✒ Construction graphique des termes de (un ) dans le cas d’une définition récurrente : un+1 = f (un )

O ı⃗

ȷ⃗

y = f (x)

y = x

u0

↑

→
↑
→ ↑

u1 u2 u3

Suite croissante

O
ı⃗

ȷ⃗ y = f (x)

y = x

u0

↑

→

↓

←
↑

→
↓

u1u2 u3u4

Mode "escargot" (suite alternée)

1. On part de u0

2. On prend son image par f : u1 = f (u0)

3. On "rabat" u1 sur l’axe des abscisses par "projection horizontale" sur y = x

4. On répète cette procédure avec u1, puis u2 ...

✒ Algorithmes Python à connaître

Exemple à adapter en fonction de la suite étudiée, ici u0 = 1 et un+1 = 2un +5.

########## Programme CALCUL #########
# calcule et affiche le terme de
# rang n demandé par l'utilisateur

# demander la valeur de n
n = int(input("n = "))
# initialisation u0 = 1
u = 1
# boucle de calcul
for i in range(n):

u = 2 * u + 5
print("u = ", u)

########## Programme SEUIL ##########
# affiche le rang n à partir duquel
# un devient plus grand que M

# initialisation : u0 = 1
n = 0
u = 1
while u < M: # tant que un < M

# on calcule le terme suivant
n = n + 1
u = 2 * u + 5

print("n = ", n)

Remarques :
• dans l’algorithme de calcul, on peut afficher tous les termes jusqu’à un en plaçant

print("u = ", u) dans la boucle for

• dans l’algorithme de seuil, on peut être amené à remplacer la condition u < M par u > M

Mathieu Pons mathete.net FORMULAIRE PREMIÈRE SPÉCIALITÉ MATHÉMATIQUES

mathete.net


LES PROBABILITÉS

✒ Formules fondamentales

Probabilité de A p(A) = nombre d’éléments de A

nombre d’éléments totals

Probabilité conditionnelle p A(B) = p(A∩B)

p(A)

Formule de la réunion p(A∪B) = p(A)+p(B)−p(A∩B)

Si A et B indépendants p(A∩B) = p(A)×p(B)

Complémentarité de A et de A p(A)+p(A) = 1

✒ Représentation par un arbre pondéré

Ω

A

B p(A∩B)p A(B)

B p(A∩B)p A(B)

p(A)

A

B p(A∩B)p A(B)

B p(A∩B)p A(B)

p(A)

p(B) = p(A∩B)+p(A∩B)

= p(A)×p A(B)+p(A)×p A(B)

Formule des probabilités totales

✒ Représentation par un tableau

A A Total

B p(A∩B) p(A∩B) p(B)

B p(A∩B) p(A∩B) p(B)

Total p(A) p(A) 1

Remarques :
• dans un tableau, on peut remplacer les probabilités par des effectifs
• dans un tableau, on lit "les intersections" et on calcule les probabilités conditionnelles
• dans un arbre, on lit les probabilités conditionnelles et on calcule "les intersections"

✒ Notion de variables aléatoires

N Loi de probabilité de X :

X x0 x1 . . . xn

p(X = xi ) p(X = x0) p(X = x1) . . . p(X = xn )

N Formules à connaître

Éspérance (ou moyenne) de X E(X ) =∑
xi ×pi = x1 ×p1 +x2 ×p2 + . . .+xn ×pn

Variance de X V (X ) = E
(
X 2)− (E(X ))2 =∑

x2
i ×pi − (E(X ))2

Écart-type de X σ(X ) =p
V (X )

Remarques :
• les valeurs xi peuvent être de nature très différentes (nombre de boules, somme d’argent, . . .)
• l’espérance s’interprète en contexte par rapport à la nature des xi
• l’écart-type permet de calculer la moyenne des écarts à la moyenne est permet d’accorder plus

ou moins d’importance à la moyenne

✒ Répétition d’épreuves à l’identiques

On répète n fois de manière identique et indépendante une épreuve à deux issues : succès ou échec.

S

S

S · · · · · ·p

E · · · · · ·1−p
p

E

S · · · · · ·p

E · · · · · ·1−p

1−p
p

E

S

S · · · · · ·p

E · · · · · ·1−p
p

E

S · · · · · ·p

E · · · · · ·1−p

1−p

1−p

Probabilité d’obtenir exactement n succès p(S)n = pn

Probabilité d’obtenir au moins un succès 1−p(E)n = 1− (1−p)n
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LA TRIGONOMÉTRIE

✒ Cercle trigonométrique et valeurs remarquables

O
•0

•
π

6

•
π

4

•
π

3
•
π

2

•
2π

3

•
3π

4

•
5π

6

•π

•
−π

6•
−π

4•
−π

3•
−π

2

•
−2π

3

•
−3π

4

•
−5π

6

p
3

2

− 1
2

−
p

3
2

1
2

p
2

2

−
p

2
2

−
p

2
2

p
2

2

1
2

−
p

3
2

− 1
2

p
3

2

✒ Formules de trigonométrie

cos2 a + sin2 a = 1

cos2 a − sin2 a = cos2a

sin2a = 2sin a cos a

cos2a = 2cos2 a −1

cos2a = 1−2sin2 a

cos(a +b) = cos a cosb − sin a sinb

cos(a −b) = cos a cosb + sin a sinb

sin(a +b) = sin a cosb +cos a sinb

sin(a −b) = sin a cosb −cos a sinb

tan a = sin a

cos a

✒ Trigonométrie dans le triangle rectangle (SOHCAHTOA ou CAHSOHTOA)

A

C

B

cos �ABC = Adjacent

Hypothénuse
= AB

BC

sin �ABC = Opposé

Hypothénuse
= AC

BC

tan �ABC = Opposé

Adjacent
= AC

AB

✒ Repérage sur le cercle trigonométrique

O
•0•π

•x•π−x

•−x•π+x

•

Les cosinus et les sinus sont
soit égaux, soit opposés

cos(π−x) = −cos(x)

sin(π−x) = sin(x)

cos(−x) = cos(x)

sin(−x) = −sin(x)

cos(π+x) = −cos(x)

sin(π+x) = −sin(x)

✒ Mesure d’angle et conversion

Mesure principale α ∈ ]−π ;π]

Mesure secondaire α+k ×2π
(
k ∈Z∗) deg rad

× π

180

×180

π

✒ Équations trigonométriques

cos X = cos a ⇐⇒
 X = a +k ×2π (k ∈Z)

X = −a +k ×2π (k ∈Z)

∣∣∣∣∣∣ sin X = sin a ⇐⇒
 X = a +k ×2π (k ∈Z)

X = π−a +k ×2π (k ∈Z)

✒ Fonctions sinus et cosinus

N Courbes représentatives :

−3π −2π −π π 2π 3π

−1

1

O

2π-périodique

cos(x) sin(x)

N Encadrement : pour tout réel x, on a −1⩽ cos x ⩽ 1 et −1⩽ sin x ⩽ 1

N Périodicité : pour tout réel x, on a cos(x +2π) = cos(x) et sin(x +2π) = sin(x)

N Parité : pour tout réel x, on a

cos(−x) = cos(x) =⇒ symétrie par rapport à l’axe des ordonnées

sin(−x) = −sin(x) =⇒ symétrie par rapport à l’origine O
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LE PRODUIT SCALAIRE

✒ Propiétés importantes

−→
u .

−→
v =−→

v .
−→
u

(
k
−→
u

)
.
−→
v =−→

u .
(
k
−→
v

)
= k

−→
u .

−→
v

−→
u

(−→
v .

−→
w

)
=−→

u .
−→
v +−→

u .
−→
w

−→
u .

−→
v = 0 ⇐⇒ −→

u ⊥−→
v

✒ Formules à connaître

N Définition et projection

−−→
AB .

−−→
AC = AB × AC ×cos �B AC

= −−→
AB .

−−→
AH

= ±AB × AH

= 1

2
(AB2 + AC 2 −BC 2)

A B

C

H
−−→
AB .

−−→
AC > 0

A B

C

H
−−→
AB .

−−→
AC < 0

N Définition analytique

−−→
AB

(
xB −xA

yB − y A

)
=

(
x

y

)
−−→
AC

(
xc −xA

yc − y A

)
=

x′

y ′


AB =

√
(xB −xA)2 + (

yB − y A
)2

−−→
AB .

−−→
AC = xx′+ y y ′ A

C

B

N Identités remarquables

(−→
u +−→

v
)2 = −→

u
2 +−→

v
2 +2

−→
u .

−→
v ⇐⇒ −→

u .
−→
v = 1

2

(∥∥∥−→u +−→
v

∥∥∥2 −
∥∥∥−→u ∥∥∥2 −

∥∥∥−→v ∥∥∥2
)

(−→
u −−→

v
)2 = −→

u
2 +−→

v
2 −2

−→
u .

−→
v ⇐⇒ −→

u .
−→
v = 1

2

(∥∥∥−→u ∥∥∥2 +
∥∥∥−→v ∥∥∥2 −

∥∥∥−→u −−→
v

∥∥∥2
)

(−→
u +−→

v
)

.
(−→

u −−→
v

)
= −→

u
2 −−→

v
2 ⇐⇒

(−→
u +−→

v
)

.
(−→

u −−→
v

)
=

∥∥∥−→u ∥∥∥2 −
∥∥∥−→v ∥∥∥2

✒ Formules d’Al-Kashi et loi des sinus

a2 = b2 + c2 −2bc ×cos Â

b2 = a2 + c2 −2ac ×cos B̂

c2 = a2 +b2 −2ab ×cosĈ

a

sin Â
= b

sin B̂
= c

sinĈ
A c B

a

C

b

LA GÉOMÉTRIE ANALYTIQUE

✒ Équation réduite et cartésienne de droite

O

y = mx +p

∆x

∆y

m = ∆y

∆x
= yB − y A

xB −xAp

ax +by + c = 0

n⃗

(
a

b

)

v⃗

(
−b

a

)

D

m : coefficient directeur

p : ordonnée à l’origine

n⃗ : vecteur normal ou orthogonal

v⃗ : vecteur directeur

A

B

✒ Appartenance d’un point à une doite D

• je détermine un point de D en fixant x à une valeur quelconque et en isolant y
• je teste si un point appartient ou non à la droite en remplaçant x et y dans l’équation de D

✒ Équation cartésienne de cercle

−−−→
AM ⊥−−−→

B M ⇐⇒ −−−→
AM .

−−−→
B M = 0

⇐⇒
(

x −xA

y − y A

)
·
(

x −xB

y − yB

)
= 0

⇐⇒ (x −xA)(x −xB )− (y − y A)(y − yB ) = 0

OM2 = r 2 ⇐⇒ (x −xO )2 − (y − yO )2 = r 2

A
|

O
r

B

M
(
x ; y

)

✒ Colinéarité de vecteurs et alignement de points

−→
u

(
x

y

)
et

−→
v

x′

y ′

 colinéaires ⇐⇒ x y ′−x′y = 0

⇐⇒ −→
u = k

−→
v (k ∈R)

A,B et C alignés ⇐⇒ −−→
AB et

−−→
AC colinéaires

✒ Déterminer les coordonnées d’un point défini par une relation vectorielle

−−→
AE =α−−→AB +β−−→AC ⇐⇒

{
xE −xA =α(xB −xA)+β(xC −xA)

yE − y A =α(yB − y A)+β(yC − y A)

✒ Intersections de droites

D1 ∩D2 ⇐⇒
{

équation de D1

équation de D2
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